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The spin-one Ising ferromagnet on a simple cubic lattice is treated in the mean- 
spherical approximation (MSA) for an exchange potential J(r) parametrized by 
a Kac-Baker inverse-range parameter y. The mean-field result is recovered when 
y--. 0; in this limit the result is exact. For y ~ 0, a detailed analysis is given of 
the phase separation associated with the tricritical point that occurs. The 
analysis is made through the relation that gives the internal energy via ( J ( r ) ) .  
It shows that the MSA result satisfactorily captures the important thermo- 
dynamic features of the tricritical point as long as y is not too large. The case 
of Coulombic J(r) is also considered; here J(r) is antiferromagnetic. An 
argument is given in support of the expectation that on the simple cubic and 
body-centered cubic lattices the Coulombic J(r) will give rise to a tricritical 
point at which a 2-line of N~el points meets a paramagnetic-antiferromagnetic 
coexistence boundary. 
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I. I N T R O D U C T I O N  

In this paper we solve the spin-one Ising model in the mean-spherical 
approximation (MSA) on a simple cubic lattice for an exchange potential 
parametrized by a Kac-Baker inverse-range parameter [ 1, 2] y, J ( r ) =  
y3f(yr). We then go on to consider Coulombic J(r). 

We first consider the ferromagnetic case in the Kac-Baker limit, 9' ~ 0, 
in which we recover the mean-field result, which is the exact result in this 
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limit. The model exhibits tricritical behavior, as expected, and for nonzero 
y we find that the MSA treats the coexistence associated with the tricriti- 
cality of the model more accurately than mean-field theory as long as y is 
sufficiently small. For larger values of y, the spin-1 MSA shows some of the 
same spurious features that appear in the spin-l/2 behavior of the MSA 
(for all y > 0) when one evaluates the thermodynamics from the expression 
for the internal energy in terms of ( J ( r ) ) ,  hereafter referred to as the 
energy relation. From this expression one finds (for both spin-1/2 and spin-1 ) 
a critical temperature at which 

H =  A m  5 - C m  3 + . . .  ( .4, C >  O) (1)  

(H is magnetic field and m is magnetization.) The magnitude of A and C 
is determined by A ~  O((y3) -2) and C ~  O(1). Since C >  1, the "double" 
loops that result from (1) are unavoidable as m 3 will dominate for suf- 
ficiently small m. (This behavior of MSA-like theories follows from the 
analysis made in [ 3 ].) 

The equation of state can also be found from the correlation function 
via the susceptibility relation of fluctuation theorem, which yields a critical 
isotherm that is without the m 3 term, 

H =  D m  5 + . . .  ( D  > 0). (2) 

An earlier study by one of us [4] of the lattice-gas (or equivalently, the 
spin-1/2 Ising model) indicated that in the MSA the approximation resulting 
from use of the susceptibility relation is not of a form that yields a 
coexistence curve from a Maxwell construction in a three-dimensional 
systemmthe associated equations have no real solution. This unpromising 
result has led us to focus exclusively here on the use of the energy relation 
in obtaining MSA thermodynamics for the spin-1 system. We find that if 
the Curie point becomes tricritical then the - - C m  3 term in (1) and the 
spurious double loop to which it gives rise vanishes. Moreover, when y is 
reduced so that the B of Eq. (83) is below the value 0.22, the 2-line of Curie 
points and the phase boundary for paramagnetic-ferromagnetic coexistence 
obtained from the energy relation do not meet at the tricritical point at an 
angle of 180 ~ in the p - T  plane as they do in a mean-field treatment 
(p = density, T = temperature). 

The presence of a tricritical point in the p - T  plane rather than a 
simple critical point is to be expected on the basis of earlier theoretical 
studies I 5, 6], as is the way the location of that point and the shape of the 
associated phase diagram in the p -  T plane hinges so strongly on the 
potential range through the single parameter B of Eq. (83). The abrupt loss 
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of tricriticality at B -  0.22 appears to be an artifact of the approximation, 
however. On the basis of existing theory [ 7, 8 ], one would expect tricriti- 
cality for short-ranged as well as long-ranged potentials. 

In the above analysis, detailed in Section II, we consider only the 
ferromagnetic case. But for lattices that can be decomposed into two identical 
interlaced sublattices there is a correspondence between the thermodynamic 
properties in the spin-1 ferromagnetic case and the properties in the anti- 
ferromagnetic case in which J(r) is replaced by a "staggered" J~(r) which 
is - J ( r )  on the sublattice bearing a nearest-neighbor site and J(r) 
otherwise, e.g., for the cubic lattice of unit spacing, J~(r)= ( - 1  )x +y+ ~ J(r) 
where r = (x, y, z). In the p - T  plane the locus of Curie points becomes a 
locus of N6el points and the coexistence of paramagnetic and ferromagnetic 
phases becomes coexistence of paramagnetic and antiferromagnetic phases. 
In general, J,(r) will have a different range than J(r) and will correspond 
to a different value of B. Thus in the p -  T plane one expects the location 
of the tricritical point and the phase boundaries to shift as one goes from 
J to J~, but one does not expect to lose the tricriticality. One of the 
implications of this observation, developed in Section III, is that on lattices 
that permit staggering of J(r), one would expect tricriticality in the spin-1 
Coulombic antiferromagnetic case, which is the lattice-gas version of the 
restricted primitive model. This follows from the fact that the spin-1 anti- 
ferromagnet with a Coulombic J(r) is isomorphic to the spin-1 ferromagnet 
with a staggered J(r) that formally is of short range, when its range is 
characterized by the range parameter y. And as we have noted, for the spin-1 
ferromagnet with short-ranged J(r), one expects the presence of a tricritical 
point in the p -  T. 

I I .  THE MSA FOR THE SPIN ONE MODEL 
OF He  3 - H e  4 MIXTURES 

In the lattice-gas version of the H e  3 -  H e  4 mixture [ 5 ] the continuum 
fluid of He 3 -  He 4 is replaced by a lattice gas in which either o n e  He 3 or 
o n e  H e  4 is  always present at each lattice site. This is equivalent to a spin- 
one model where spin s = 0 means a He 3 atom while s = + 1 means a H e  4 

atom. The difference between the number of spins with s = 1 and s = -  1 
measures the superfluid ordering parameter. When this difference is zero, 
the fluid is in the normal fluid state. Between spins s~ and sj at sites r~ and rj, 
respectively, there will be an interaction of exchange form (fl =I /kBT) .  

q~,~j(ru)=-~ J(riy) sisj; ( r u = r , - r  j) (3) 

822/89/1-2-13 
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Such a spin system can also be used to model a classical lattice-gas mixture 
in an even more direct way. Spin s = -  1 can be identified with a particle 
of one species, spin s = 1 with another species, and spin s = 0 is an empty 
cell (vacuum). This identification of s = 0  with vacuum is consistent with 
(3) which gives no interaction with other cells whenever s i=  0. We further 
consider this interpretation in Section III. 

The densities of each species (and thus also the number of empty cells, 
i.e., number of H e  3 atoms), will be determined by their chemical potentials 
and vice versa. [The chemical potentials are determined by the spin distri- 
bution before the interaction is turned on.] 

The MSA for a lattice gas is defined by the expression 

c~,~j(r~j) = 2J(ro.) s,sj for ro. ~:0 

h~,~j(r&.) = - 1 for r U = 0  
(4) 

for the direct correlation function c~,~j and pair correlation function h~,~j, 
respectively. To obtain these functions in full, (4) has to be used as a con- 
dition in solving the OZ (Ornstein-Zemike) equation which in its Fourier- 
transformed version reads 

h~,~j(k) = ~,~j(k) + ~ P~k C~,~k(k) h~k~j(k) 
sk ~ 0  

(5) 

One will find the solution to be of the form 

c~,~j(r.) = co(r) + c(r) s, sj 

h~,~j(r) = ho(r) + h ( r ) ( s , -  m)(s j -  m) 
(6) 

where 

ho(k) = ~o(k) + p~o(k) ho(k) 

h(k) = ~(k) + R~(k) h(k) 
(7) 

with boundary conditions 

co(r) = 0  

ho(r) = - 1  

and c(r) = 2J(r) for r > 0; 
(8) 

and h ( r ) = 0  for r = 0 .  
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Here the subscript zero refers to the reference system in which J ( r ) =  0, and 

P =  ~ P ~ = P l  +P2 
s4 ,0  

m = ( s ) = Z s p s = p z - - p ,  (9) 
$ 

R = ( (s -- m) 2) = ~ (s 2 -- m 2) Ps = P -- m2 
s 

(Y'.~ p s =  1 with cell volume 1. Note p~=~ =P2 and p~= - l  =Pt) .  The p will 
be the density or fraction of He 4 while m will become the superfluid order 
parameter. From (7) and (8) one easily finds 

ho(r) = 0 for r:~O and c o ( O ) = - l / ( 1 - p )  (10) 

which is the exact solution for the lattice gas with no interactions between 
different sites. Use of (7) and (8) yields 

5(k) = 2[ -K+ Y(k)] (11) 

where 

J ( k ) -  ~ eikrj(r)  
r ~ O  

and where the constant K will be determined by the core condition 
( -Tc <~ ki  <~ Tc', i = x, y, z ) 

1 f g(k) dk 
0 = h(O) = (2zc)3 1 - Rg(k) 

11 1 dk 1 
= R  - 1 + ( 2 n ) 3  1 + 2 R K - 2 R J ( k )  (12) 

o r  

with 

1 f dk 
(2n) 3'J 1 - ( l / z )  J(k) 

= 2 z R  (13) 

1 + 2 P ~  1 
z . . . . .  bK 

2R 2R 
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To determine the location of a phase transition we will need the pressure 
and the chemical potentials. The thermodynamics we obtain most easily by 
using the results of Hcye and Stell [ 9 ]. There we find for a mixture: Inter- 
nal energy per unit volume pu = ~_,~ piu~ where 

1 f - -~p iu i -~ '2  EPiPj. (hu(r) + 1 ) c o ( r ) d r  
J 

] =~ pi(hu(O)-cu(O))+~.~pipjS~j(O) (14) 
J 

or in the present case 

- f lpu = R K  + J( O ) m 2 (15) 

For the excess free energy fe ,  where u =fl(Of~'/Ofl), we have 

1 
_ f l p f E = ~  ~.. pi&[~'~:(O)--~oo.(O)]. 

q 

1 1 
2 (2rr) 3 Trace f {In[ 1 - p~'(k)] + pS(k)]} dk 

1 1 
q 2 (211:) 3 Trace f {In[ 1 -p5o(k) ]  + p~'o(k)} dk (16) 

(where here p~ and Pgo are matrices). In our case this becomes 

_ f l p fE  = L + A m  2 + p K  (17) 

where 

A - K + J ;  J =  J(0) (18) 

and 

1 1 f l n ( 1 - p g ( k ) )  dk (19) 
L = 2 (2zc) 3 

By use of (11) and (13) this can be written as 

L ~  
1 1 : ( 1 )  1 
2(2~) d In 1 - - z J ( k )  d k - ~ l n I  (20) 
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where 

1 f 1 dk  I =  (2re) 3 - ( l / z ) J ( k )  = 1 + 2RK (21) 

Excess chemical potential is given by 

-- flpt/.t f = prO(--.13pf~r)/Opt = �89 Z P, pt(~,,(O) -- Cou) -- f l p t u ,  
i 

We get by use of (14) (since f l p t u t =  0 for J =  0) 

,a~ ~ =  - K + 2 m A  
(22) 

f l l . t~= - K -  2 m A  

Excess Gibbs free energy is given by 

flp/t~ = ~ flpt/2~ = - p K - 2 m Z A  (23) 
1 

Excess pressure follows from 

f l p e  = , O p p E _  f l p f  E = L - -  A m  2 (24) 

The pressure and chemical potentials of the hard-core reference system 
(or non-interacting spins) are well known; 

flpO= - ln (1  - p )  

t ip~ = In p , -  I n ( 1 - p )  (25) 

f lp~ = ln pz  - l n ( 1 -  p)  

So in the MSA the total pressure and chemical potentials are given by 

tip = flpo + ill)e = _ ln( 1 - p)  - A m  2 + L 

~B ~ = flt~ ~ + flB f = ln p , - l n ( 1 -  p ) - 2 m A  - K (26) 

fl/~2 = fl/~o + f l /~=  In P2 - ln(1 - p )  - 2 m A  - K 

We will now begin to consider phase transitions of the system. It is then 
convenient to take the difference between the two last equations of (26) to 
obtain the magnetic field of the corresponding spin system 

1 1 1 
f l H = 2  ( f l B z - f l l u ~ ) = 2 1 n ( p z / P ~ ) - Z m A = - 2  In ~,'p - 2 m A  (27) 
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In our case the probabilities of up and down spins are equal so P~=P2 or 
H = 0 ,  i.e., 

1 +m/p 
4 m A  = In ~ (28) 

1 - m / p  

When p is not too small the system will behave as an ordinary spin one- 
half ferromagnetic system with up and down spin states, whose phase 
transition is determined by (28) for constant p (since the same p in both 
phases will satisfy (26)). By expansion of (28) we find 

2 p A  = 1 +-~ + . . .  (29) 

The spontaneous magnetization is thus m =  + _ p ( 3 ( 2 p A -  1))1/2, which goes 
to zero as 2 p A  ~ 1. So the critical temperature is determined by 

2 p A  -- 1 (30) 

The J in Eq. (18) is proportional to inverse temperature fl, so we may con- 
sider the J to be our measure of inverse temperature. Due to the K in (18), 
the A will depend upon m, fl, and p. This m-dependence will have the effect 
that close to the critical point (29) will have several solutions for m which 
reflects the double loops of the MSA previously discussed in Section I. 

However, if we let the inverse range of interaction ? go to zero then 
K ~ 0 and L ~ 0 and we obtain the "mean-field" limit where A = J. 

When p drops below a certain value, the above ferromagnetic trans- 
ition is no longer the stable solution. The change takes place where the pre- 
vious critical point becomes tricritical. Instead of phases with equal p there 
will now be phases with unequal p. In one of the phases the m = 0  and 
P < P ,r while in the other phase m # 0 and p > p,r where p,~ is the tricritical 
value of p. The tricritical point and the phase transition below is deter- 
mined by equal pressures and chemical potentials in the two phases. 

Denoting the quantities in the m = 0 phase by a subscript "o'" we find 
from (26) (/~l =/z2) 

- In( I - p o) + Lo = - In( 1 - p ) - A m  2 + L 

l n ( � 8 9  (31) 

In( �89 p o) - In( 1 - p o) - Ko = In p 2 - In( 1 - p ) - 2 m A  - K 

To make the analysis simpler we consider first the mean-field limit for 
which the results are well known. Then we have Lo = L = 0 and Ko = K =  0 
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(A = J). From (31) we again obtain Eq. (28). The first one of Eqs. (31) 
means 

1 - - p o = ( 1 - - p ) e  Am2 (32) 

while the sum to the last two  means 

2 1 p2 _ m z 
Po 191192 

4(1 - po )2 -  (1 - - p ) 2 - 4  (1 _p)2.  
(33) 

Eq. (28) can also be solved with respect to p 

cosh(2mA ) 
p = m  (34) 

sinh(2mA ) 

Use of (32) and (34) in (33) gives 

Po = ( p 2  __ m 2) 1/2 eAm 2 __ 
m 

sinh(2mA) 
e Am2 ( 3 5 )  

Elimination of p and Po in (32) then gives 

-- ( c~ 2mA ) ) eA"e m e Am2.-- 1 - m  (36) 
1 sinh(2mA) sinh(2mA) 

o r  

e - A,,~ + m tanh(mA ) - 1 = 0 ( 37 ) 

This equation determines A as function of m or vice versa (p ~ Po). The tri- 
critical point will be determined by the resulting value of A when m ~ 0. 
The tricritical point and the phase transition close to it can be determined 
explicitly by expansion. Numerically Eq. (37) can be solved in a straight- 
forward way for any m or A. The expansion gives 

1 " Am 2 + Ia2m 4 -  ~ a 3 m  6 -.I- . . .  

+ m ( m A - l ( m A ) 3 + ~ ( m A ) 5 +  . - - ) - - 1 = 0  (38) 

o r  

1 1 ~ - . ~ A - - ( t A - Z A 3 )  m z 

Accordingly the tricritical value of A is 

(39) 

A , . = A = 3 / 2  (40) 
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and from (30) the tricritical density is thus 

p , , =  1/3 

For small m, (39) gives 

A -  3 = 3 (~A2r -~ )At rm2=  ] m  2 

and then from (34) and (35) 

1 1 1 13 
= m 2 - - - = ~ m  

P - - 3  2-'A+ 3 15 

1 1 1 2 _ ~ _ . _ =  _ _ _ m  2 
P o - ~  2A 3 15 

(41) 

(42) 

(43) 

From this solution we note that 

1 - 2 A p o  = O(m 4) (44) 

which to  order m 2 is nothing but Eq. (30), which determines the ordinary 
critical point. In mean-field, where A = J( oc fl), this means that the critical 
line and the line for the phase with density Po ( m = 0 )  has a common 
tangent at the tricritical point (in a p - T  diagram). Thus the angle 
between these two lines will be 180 degrees, which is characteristic of mean- 
field theories of tricriticality. 

Mean-field theory becomes exact for J(r) of infinite range. We will 
now begin the analysis for forces of finite range. To do so we need a more 
explicit expression for the integral given by (13) or (21), at least close to 
the critical point. For forces of finite range y-~, where y is the inverse range 
of J(r), 

J(k) = ,7(0) - c o n s t ( k / y )  2 + . . .  (45) 

for small k, fvhere k = [k[. For small e, where 

e 2 = l - l j ( 0 ) = l  2R 1 
z - T ( K + A )  = I  (1 - 2 R A )  (46) 

we thus find that the I of (21) can be expanded as 

I =  Ira(1 - -  2be  + . . .  ) 

where Im and b oc ),3 are constants. 

(47) 
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A convenient choice [ 10] of J(r) is P(r, z), the Green's function for 
the (discretized) Helmholtz equation on the lattice [ 11 ], 

1 e i k r  

P(r, z ) -  (2zc)3 f dk _ (48) 
1 - z ~ , ( k ) '  

where the integration is over a Brillouin zone and if(k) is the characteristic 
function of the lattice. Then Y(k)~ [ 1 - z ~ ( k ) ]  -~ + const and ? 2 can be 
taken to be proportional to z -  1. When z = 1, P(r, z) becomes the Green's 
function for the discrete Laplace equation and so becomes an appropriate 
Coulombic J(r) for the lattice, with J ( k ) ~  k -2 for small k, which we shall 
exploit in Section III. Finally the nearest-neighbor case corresponds to 
simply letting J(k) be proportional to ~(k) itself. For instance, for the 
simple cubic lattice one has 

J(k) = J �89 kx + cos ky  + cos kz) = J( 1 - -~k 2 + ... ) (49) 

By a straightforward computation one then finds 

3 x/~ = 1.17... (50) 
2 b I m =  2re 

The Im has also been computed in an analytic way [ 12]. Its value in the 
literature is reported to be I m =  1.5163860591... 

Equation (30), which determines the critical line, will hold in general, 
not only in the mean-field case. Use of (9), (30), and (46) shows that e = 0  
on the critical line and at the tricritical point. Due to (47) the equation of 
state will thus have singular behavior in the neighborhood of this line. 

If there is a magnetic field acting on the spin-one system, then Eq. (27) 
holds. We will study the critical isotherm for small m. 

f i l l =  m l ( p )  3 l ( p )  5 - - +  + + . . . .  2 m A  (51) 

From (46) and (47) 

e2.[ = 1 - -  2 R A  = 1 + 2 R K -  2 R  J =  I -  2 R J  = Im(1 - 2be + . . .  ) - 2(p - m 2) J 

(52) 

At the critical point e =0  and m = 0  so I m =  2pJ. When a magnetic field 
is applied, the p as defined by (9) will vary along with m. However, for 
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simplicity we assume it fixed for the moment as this should not affect our 
conclusions. So for critical J and m 4= 0 

m 2 
e2 I - -  e 2 I m  = - -  2bI,,, e + ~ Im (5 3) 

P 

o r  

1 m 2 1 
oc m 2 (54) 

e - 2 b  p -~ 

for small m 2 ( , ~ , ~ 3 ) .  So With (46) and (51) 

f l H =  m l ( p )  3 l ( p )  5 - - +  + + . . . .  2m 
p 

1 - e 2 I  

2(p - -m 2) 

( 1 ) ( m )  3 ( 5 ) ( p )  5 m ( m 2 ~  2 
---- - -  P - -  5 7 -t- - -  19 2 -I- 7 Im \2-'~PJ jr.... (55) 

This clearly shows the previously mentioned inconsistency of the ordinary 
MSA critical point. The critical behavior in an extended region is 
dominated by the me 2 term (~mS/y 6 as m ~ 0). However, in a region 
where m2~ y3, (55) has an irregular behavior since the m 3 term which has 
a negative coefficient will dominate for p > 1/3. When p approaches 1/3 one 
sees that this inconsistency vanishes. At p = 1/3, which will be the tricritical 
point, (the same p as in mean field) this inconsistency does not exist any 
longer. Thus we have reason to expect that the MSA results close to the tri- 
critical point are close to the exact ones and that we may obtain meaning- 
ful results arbitrarily close to this point. As we will show explicitly for our 
model, this will be true if the forces are not too short-ranged. Nearest- 
neighbor interaction only [Eq. (49)] will turn out to be too short-ranged 
in this respect. 

Now we will begin to analyze the behavior close to the tricritical 
point. Along the critical line we from (52) find (e=0 ,  m = 0 ,  R = p )  

0 = 1 - 2 p A  = I,,, - 2 p J  or J = I m A  (56) 

Along the curve of coexistence below the tricritical point e 4:0 which means 
[Eq. (52) to O(e)] 

I,,( 1 - 2be + ... ) - 2(p - m 2) J = O, (57) 

and for the branch with m = 0 

I,,,( 1 - 2beo + . . .  ) - 2po  J = 0 (58) 
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Along the curves of coexistence away from the tricritical point (p = 1/3) we 
must expect J (inverse temperature) to grow to have meaningful results, 
i.e., 

2beo < 2(�89 - po)  J/Im = 3(~ -- Po) (59) 

For small m we expect P o - P , . ,  P - P t , . ,  and A - A , , .  to be of O(m 2) as 
found in the mean-field case. Thus we must expect ez~ m 4 (not e2~ m 2) 
from (52) in order not to violate (59). Even with e ~  m-" Eq. (59) may still 
be violated if b .~ y3 is too large. When this is the case the MSA results can- 
not be expected to be meaningful arbitrarily close to the tricritical point, 
i.e., inconsistencies become too large. 

A consequence of eo ~ m 2 and Eq. (58) is that 

I m - 2 p o J = 2 b I , , , e o  ~ ) '3m2 (60) 

This differs from the mean-field result (44) (where A = J). The consequence 
of (60) is that the angle between the critical line and the line for the phase 
with density P o becomes less than 180 degrees at the tricritical. This is due 
to the singular behavior (47) of the integral (21). The result of (60) is in 
accordance with both the results of renormalization-group analysis [ 13 ] 
and with the experimental situation for H e  3 -  H e  4 mixtures ! 14], a feature 
which has not been possible to describe by mean-field theories. 

We find that the equations of (31 ) can be handled exactly without too 
much trouble. This hinges very much on an expression for I that makes it 
possible to find L explicitly and at the same time makes it possible to 
eliminate eo and e. The numerical problem reduces to solving two equations 
for the two unknown p o and m with A considered known. [ In mean-field we 
had only one such equation (37). ] The suitable expression for I will be 

= = Im(1  - -  2 b e  + . . .  ) (61) I 1 + 2be + ce 2 

where Im = 1 + 2b + c (I = 1 for e = 1 ). We want to express all other quan- 
tities in terms of P o, m, and A. Eq. (34) holds and by that we have an 
expression for p. Combining (9), (52), and (61 ) we find 

g2I = ~ = 1 - 2 ( p  - m 2 )  A 

( Im  - -  C .  ) e z - -  2 b . e  - -  o~ = 0 
(62) 

t = i m _ _ c - - - - - - ~ [ b o c + ~ / ( b o ~ ) 2 + ( I m  c~) 0~] (63) 
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Eq. (52) also gives the inverse temperature J 

I(1 - - e  2) 
J=2(p_m2 ) (64) 

where (61) and (63) gives I explicitly. For R=po Eq. (52) becomes 

e2oIo=Io-2po J (65) 

or by use of (61) 

eo2 = 1 - q(1 + 2beo + ce 2) (66) 

where q = 2po J/lm" 
SO 

~0 ~ ~  

1 [ -qb  + x/(qb) 2 +(1  - q ) ( 1  + qc)], (67) 
1 +qc 

and by that we have Ko and K explicitly (see Eq. (21)) 

I - 1  Io--1 
K=2(p_m2 ) and K ~  2po (68) 

Finally we need L and Lo. From (20), (21), and the definition (46) of/~2 
we see that 

dL 1 ( I -  1) - 1  d 
do- - 2o- ~ ~ (In I) (69) 

where 

1 
tr = -  J(0) - 1 - e 2 

z 

&r = - 2ede 
(70) 

Accordingly 

L= - Q - � 8 9  (71) 
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The integral Q can be evaluated explicitly. (Constant of integration will be 
of no interest since we will only need L o -  L.) We have 

x[ 
Q =  ( 1 - x  2) l + 2 b x + c x  2 

f~ { - 1  1 1 1 
_- I,,,c 2 ( e l + l ) ( e z + l ) x + l  2 ( e l - 1 ) ( e 2 - 1 ) x - 1  

+ el 1 8 2 1 ] 1 ~- f dx + In( 1 - e 2) 
(1 - - e 2 ) ( e l - - g 2 )  X - - e  I ( 1 - e 2 ) ( e 2 - e l )  x - e 2  -2 

e z -  1 el - e l )  el + e2 ln(1 + e) + ~ ln(lel 
(el + 1)(e.2 + 1) el + 1 e 2 --/~1 

e l -  1 e 2 
+ ~ ~ In( lez - el ). (72) 

e 2 + 1 el -- e2 

Here the e I and e 2 are the roots of 1 + 2bx + C X  2 --" O. 

. . . .  

= -  [ - b  + 
C 

1 
2 = -  [ - b - ~ / b Z - c ]  

C 
(73) 

I~ 1 2b 
- + ~ +  1 = ( e  1 - -  1)(e2-  1) 

C C C 

By the use of the above expressions in (31) we arrive at two equations 
that can be solved numerically with respect to P o and m for given A. E.g., 
we may use the first expression of Eq. (31) and the sum of the last two 
(their difference gives (28) or (34) which we have already utilized.) 

Finally we will expand the equations around the tricritical point, i.e., 
we will consider small m --, 0. For  deviations from tricritical values we write 

1.  1 x = p - g ,  x o = P o - g  (74) 

Expansion of (28) gives 

A = 3( 1 - 3x + 3m 2) or x = m 2 - 2 ( A  - 3 )  (75) 
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Equation (62) by use of (28) gives 

e 2 I  " -  e 2 I m  -" 1 - 2 ( p  - m 2) A 

1 

4 m2 ) 
) (11 

1 m2 + p4  
p 5 

1 3 )m41 
(76) 

Equation (64) and (61) gives 

I,,,( 1 - 2 b e )  3 1 . , (  1 - 2 b e  - 3 x  + 3m z) (77) 
J =  2 ( ( p - m  z) = 

and combined with (65) 

3 
e o = e - - ~  ( X o - X  + m z) (78) 

Equation (28) or (75) is the result of the difference between the two 
last equations of (31). If we take their sum we instead get 

In(�89 Po) - In( 1 - Po) - Ko = �89 ln(p, p2) - l n (  1 - p) - K (79) 

Here we need an expression for K - K o  which we get from (18) and (62) 

e 2 I  - 1 

K = 2(p - -  m 2) + J (80)  

From this, using (9) and (74), we finally obtain [through expansions in 
m / p  and in x that are put into (79)] 

e2i,,, 2 ~ (x  2 x 2) ~m 4 
- - e o I m  - -  _ _  __  __  (81) 

To obtain the last equation we need we expand the first of Eqs. (31) and 
add to the result - 1 / 3  times the left-hand-side of (79). We then use (61), 
(64), (69) and (80) to find an expression for L + ]K. Expanding first in 
powers of m [with A given by (28)] and then in powers of x[ = p -  1/3 ] 
we finally obtain 

3 2 1 3 27 .3  geo(2blm) -- ~Xoe o lm -- + "~"~ o 

= - ~ ( ~ -  m ~) d I . -  ~3(2b~. )  + ~z~3_ ~xm ~ + ~ m  6 (82) 
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The resulting equations to be solved close to the tricritical point are thus 
Eqs. (75)-(78), (81), and (82) with one of the parameters A, Co, e, x, 
Xo, m 2, and J considered known. Besides these quantities the result also 
depends upon the parameters Im and b. However, by a simple inspection of 
the equations it is easily seen that these two parameters reduce to only one 
parameter 

b 
v/T  (83) 

that affect the result since e ~ m  and eo ~ m  can replace e and eo respectively 
as parameters. The B ~ b ~ ~3 where ), is the inverse range of interaction. 

These equations for the phase transition close to the tricritical point 
can be solved explicitly in a straight-forward manner for arbitrary B on a 
computer. One' finds that our MSA solution gives a well-defined phase 
transition close to the tricritical point. See Figs. 1 and 2 for the quantitative 
results. This is in contrast to the MSA behavior found from the energy 

0 .4  

0.3 

T" 
0 .2  

0 .1  

0 .0  I t i J 
0 0 .2  0 .4  0 .6  0 .8  
" l - P  

Fig. 1. The coexistence curve in the density-temperature plane. Here p is the fraction of sites 
occupied by spins and T* is kBT/.7(O), a dimensionless measure of temperature in units of 
interaction strength; see Eq. (11). The four sets of coexistence curves correspond to four 
increasing values of the inverse range of interaction given by B = 0.00, 0.07, 0.14, and 0.21 
(from top to bottom, at the tricritical point). The coexistence-curve slope at the tricritical 
point on its left-hand side becomes zero at B =0.22. The curve for the infinite-range value 
B =0.00 is exact and coincides with the result of mean-field theory. B =0.21 corresponds to 
a somewhat longer range than nearest-neighbor interaction. See Eqs. (21), (46), (47), and (83) 
for analytic details. The dashed lines represent the slopes of the 2-lines of Curie points at 
tricritical. 
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0 . 0  ,, i t t 
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B 
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Fig. 2. Slope of coexistence curve squared (relative to its mean-field value) at the tricritical 
point on its low-density side, plotted against B, a dimensionless measure of inverse range of 
potential. The ordinate is given by ((2/91,,)dJ/dxo) 2, which is (1 +(2/3)beo/Xo) 2. See 
Eqs. (77), (78), and (83) for further analytic details. The dashed line represents the limiting 
slope of the curve. 

relation for the spin-l/2 Ising model (i.e., simple lattice gas) where irregu- 
larities and inconsistencies distort the description of the phase transition 
close to the critical point [2, 3 ]. 

For some special eases we may solve our equations in an analytic way. 
One such ease is the mean-field limit B ~  O(y~O). In this case Eq. (78) 
gives 

X o - X + m  z =O (84) 

This together with (81) can then be used in Eq. (82) to give 

~Xo(~ ~ - e:o) I,. + :_7(~o_~ x ~)+ ~ x m  ~ - ~  m ~ = 0  

x o r ~ ( x :  ~ ~ (  ~ x~ i7~m" --m 6 -~o)-~Zm ~]+-xo-  )+ -  - ~  =0 
81 ,',~ 2 / / , / 2  "EtZX o + Xo m4) -- ~ X o  m4 -- ~(3X2o m2 + 3Xo m4 + m 6) 

+ -~(X o + m 2) m 4 --  -~ m 6 = 0 

-~ZXom"-~m6=o 

(85) 

Thus 

Xo__-- ~ 2 m 

13/9,/2 X--T~ 
(86) 
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This agrees with our previous result (43) as it should. In addition (76) and 
(81 ) further give 

eZlm = 9m2( 13 _ = 53_ 4) m 2 m 4 

2 eoI m =e2Im --(-~(X 2 -- X2o) -- 9m4 ) = 3 m 4  
(87) 

and from (75) and (77) (Ira= 1) 

J =  A = -~( 1 -- 3x + 3m z) = 3 + 3 m 2 (88) 

Besides this B = 0 solution we also can find explicitly the value below 
which B has to be kept to have a solution of the equations that signals a 
phase transition close to the tricritical point. [Beyond that value of B the 
equations do not have a real solution. At an ordinary critical point the 
MSA always laas such an inconsistency (for any y).] The limiting B is 
determined by eo = 0  (co < e) which can be seen from Eq. (47) for instance 
to require e (and co) to be real and positive to be meaningful. As eo ~ 0 the 
numerical solution indicates that Xo ~ 0. So let us assume Xo = 0 for eo = 0. 
Eq. (76) put into (81) then gives 

9m2(x-- ~m2) = 2--74 x2-- 9 m4 

x2---~xm2 + ~m4=O (89) 

x=(-}+_-~)  m 2 

Since e = > 0 means x > ~ m 2 it is clear that the larger one of the roots is the 
proper one here, i.e., 

x/m 2 = ~ + ~ = 0.877 (90) 

To verify that X o = 0  is the proper value for c o = 0  we consider Eq. (82) too, 
where we eliminate e2Im and 2be by means of Eqs. (76) and (78). By doing 
so we again recover Eq. (89). Thus Xo = 0  is indeed a solution. 

From Eqs: (75)--(78) we then finally find for Co=0 

3 9 
A --~=-~ (m2 - x) = 

_ l / - f -& 3(5 
v - - - ,  m E = 0.551m 2 

10 

4 m = )  3 ( ~ 0 - -  2) m4; e x / ~  = 0.835m = (91) eEIm=9m 2 x - - ~  = 5 

3m2mx 5 q ~ N / 3  5 = 0 . 2 2 0  

822/89/1-2-14 
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This value of B we can compare with the one for nearest-neighbor inter- 
action which from (49) and (50) means 

2bI,,, -0 .314 (92) 
B = 2 I ~ 2  - -  

Since the latter B is the larger one, it is clear that the interaction must be 
a little more long-ranged than nearest-neighbor to get a proper phase 
transition just below the tricritical point when the MSA is utilized. How- 
ever, for 0 < B < 0.220, the MSA, in contrast to mean-field theories, gives 
a phase diagram that is in close accordance with experimental results as well 
as exact theoretical results for tricritical points [6-8].  This is consistent 
with the conclusion [ 8 ] that the phase diagram close to the tricritical point 
is characterized by the singular behavior resulting from the finite range of 
real interactions. 

III. THE SPIN-1 S Y S T E M  AS A C O U L O M B  GAS 

On the simple cubic lattice with unit lattice spacing the Fourier trans- 
form of the discretized Coulomb interaction will be 

4n:e 2 4roe 2 
~ c ( k ) = 6 ( 1 - ~ ( k ) )  k o '  k 2 ~  (93) 

where e is charge and ~(k) = �89 kx + c o s  ky + cos kz). The ff diverges 
when k ~ 0, but is finite when ki-- ,  +_ re. We note that this Coulomb poten- 
tial can be incorporated into the spin-one model studied in this work. For 
low temperatures one expects an ordering transition into a crystal lattice 
of antiferromagnetic type. This ordering will correspond to that of the 
ferromagnetic phase considered in this work if one changes the sign of the 
interaction for odd-numbered neighbors. Thus the equivalent ferromagnetic 
problem has the interaction 

41ze 2 
~2F(k) = 6(1 + ~(k)) (94) 

such that now 

2,7(k) = - flaF(k) + const 

where the const is adjusted so that J(0) = 0 is implied according to Eq. (11 ). 
The ffF will represent a staggered interaction, and in terms of its y dependence, 
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corresponds to a ), that is larger than for nearest-neighbor interaction (i.e., 
is formally a more short-ranged interaction, see Eq. (45)). 

Evaluations for the Coulomb problem can now be closely related to 
the nearest-neighbor case. Thus one expects a line of critical points (which 
for the Coulomb case will be the antiferromagnetic line of N6el points) for 
p >i ] with p =  1/3 being the MSA tricritical point. However, as we can 
expect the parameter B of Eq. (92) to be larger than 0.22 the MSA will not 
yield a well-defined tricritical point, as discussed earlier, when one obtains 
its thermodynamics through the energy relation. For this reason, the MSA 
does not appear to be useful in treating phase separation in the Coulomb 
lattice gas. On the other hand, it may well prove useful in treating thermo- 
dynamic states away from phase boundaries. Here we show explicitly that 
the standard Debye-Hfickel low-density limit is found in the MSA 
Coulomb lattice gas. To obtain the close connection to the nearest- 
neighbor lattice gas we can consider the general lattice Green's function 

with 

O(k)=A ( 1 ) 1 - ~  I~ (95/ 

1--0r 
A =  

1 - ( 1 - o 0  I= 

1 f dk 
I==(2~z) - - - 7  1 -oct(k)  

(96) 

The O(k) is normalized such that ~ (0)=  1 and 9(0)=0.  The integral of 
interest is the one for I given by (21), to which (48) reduces at r = 0. By 
rearrangement this integral can be related to integral (96). We find 

1 f dk 
P(z)  = (27t)3 1 - zrk(k) 

_ .  1 dk(1 -oc~,) 
--(2/~) 3 f l - q ( 1 - I ~ ) - o ~ ( 1  +qI~) 

, , , , ,  

1 1 (o(W (1 - W~,) + 1 -(o~/W) 
= 1 - q(1 - I~) (2~z) 3 f 1--  W~ 

-1-q(1-i~) ~ +  1- Po(W) 

1 [ q Po(W)] 
= l + q / ~  l + l _ q ( l _ / ~ )  

dk 

(97) 



198 Heye and Stell 

where 

q = z A  

1 +qI~ 
W = a  (98) 

1 - q ( 1  - I ~ )  

P o ( W ) = I w  

Interaction (94) is obtained by putting ~ = - 1 .  This yields (I~ = I_~) 

q - - -  
2z 

211 - 1 

- m 1 m 
2z 

2( 1 - z)(Ii - 1 ) + 1 

(99) 

Now consider small densities such that z is small. Then we have (see 
Eq. (46)) 

- W - I - e  2 

2z 
~ 2  

211 -- 1 

' I 1 P ( z ) -  1 - 1 + q - ~  1 - q ( 1  - I ~ )  Po(W)-I~] 
q__,2 o e 2 ( I I - P o ( 1 - e 2 ) )  3 v / 6 e 3  

" *  ) ----" 2 ~  

(100) 

(101) 

utilizing (50) (Po( 1 ) = I1 ). 
The excess chemical potential ge" is given by expression (26) fo r /~  

and g2 for m = 0, i.e., the disord6red or fluid state. So by use of Eqs. (26), 
(21), and (9) (P(z)= I) we have 

I - 1  1 
fl,o~eX= - p K =  - p  2R = --'2 ( P ( z ) -  1)= - 3 ~/~e3 (102) 

4z~ 

Finally the e 2 should be identified in terms of the ionic fluid parameters. 
Eq. (95) for small dk and ~ = -  1 is ( d k i = k i - ~  and (Ak)2=(Ak,,)2+ 
(,jk,)2 + (,jk~)2) 

6A 2z 1 6e 2 
- z(k(k) = - z  (Ak)2 = 6 2 I ~ - 1  (Ak)---~=(Ak). -----~ (103) 
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This can be identified with the Coulomb interaction. For  small z (or tip) 
such that K is small one then has 

/s 

- z O ( k )  =flp~c(k)=~-~ (104) 

with x 2 =4nflpe 2. Thus (with dk  ~ k) 

6e2 = / s  (105) 

which inserted into (102) yields 

/s 

pP'u"X = - 8--~ (106) 

! 
This is the well-known Debye-Hiickel result for ionic fluids. 

Finally we can evaluate the parameter  B as given by (92). The P(z) 
should then be investigated close to z = 1 so we put z = 1 -  e 2. 

P(z) = (1 - 211)( 1 - 2Po(W))  (107) 

as q = - 2 / ( 2 1 1 -  1) for z = 1. Expanding expression (99) for W we find 

W =  l - e 2 ;  e 2 =  2 (211-  1)e 2 (108) 

Comparing with Eqs. (47)-(50) it follows that 

Po(W) = I,,(1 - 2b~ w + "'" ) 

So 

P(z)=Ilm(1 - 2 b l e  + ... ) 

with 

11,. = ( 2 1 1 -  1 )a 

b l = 211 b Ii "- 1 

Inserted into (92) this yields (I,. = I1) 

b l ( 2i  I )3/1 b 
B = ~ = \2Ix - 1 i~/z = 0.572 

, t im 

with b and B given by (49) and (50). 
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IV. D I S C U S S I O N  

As mentioned in our Introduction, one expects tricriticality in a spin-1 
ferromagnet for all values of B. The fact that one finds MSA tricfiticality 
confined to a range of B that ends at the value 0.220 on a simple cubic 
lattice is almost surely an artifact of the approximation. In light of the 
results of [ 7-9] and of [ 13 ] one would expect the zero slope to the left of 
the tricritical point to be realized only for B ~ ~ rather than for any finite 
value of B. 

Except for this feature, the thermodynamic behavior of the MSA is 
very much like the exact behavior found in the spherical-model limit, 
D ~ ~ ,  of a classical D-dimensional spin system with the spherical con- 
straint Z~_~s 2 = N, which was studied in detail in reference [7] and [8]. 
In particular, the way the coexistence-curve geometry hinges upon the 
potential range in the D ~ oo limit is closely mirrored by the MSA spin-1 
behavior. We conclude from this study that when used judiciously, the MSA 
is a useful approximation for the study of spin-1 systems, and its solution 
deserves to be extended to the full BEG Hamiltonian studied in ref. [ 5]. 

We have used the correspondence (that follows the equivalence noted 
above Eq. (94)) between the thermodynamics for staggered and non- 
staggered potentials to argue that one should expect tricritical behavior in 
the spin-1 antiferromagnet with Coulombic J(r), which is the lattice-gas 
version of the restricted primitive model (RPM) of a charged hard-sphere 
fluid of anions and cations of equal charge number and diameter. The 
suggestion that the RPM might have a tricritical point was made in 1993 
by Kholodenko and Beyerlein [ 15] on the grounds that one might expect 
such behavior for a spin-1 antiferromagnet. Fisher [ 16] subsequently 
argued against the suggestion. He noted that there was no experimental 
evidence for systems believed to be well-modelled by the RPM or direct 
simulation evidence for the RPM itself of such tricriticality, and further 
argued that the theoretical grounds for expecting such tricriticality is weak. 

There continues to be no direct evidence for tricriticality in continuum 
models of ionic fluids or in real electrolytes. However, unlike Fisher, we 
believe there are strong theoretical grounds for expecting tricriticality in the 
lattice-gas version of the RPM on the simple cubic lattice. We regard the 
argument we have put forward here as one of them, under the assumption 
that in an exact treatment tricriticality is preserved for B as large as 0.572, 
as the results of [ 7-9 ] and [ 13 ] strongly suggest. (Another is the fact that 
in the p = 1 limit in which all sites are occupied by ions, the antiferro- 
magnetic spherical model with Coulombic J(r) shows a N6el point on the 
simple cubic lattice [ 17].) We also believe that much could be learned by 
extending the results of [7] and [8] to a Coulombic J(r). 
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Because of the absence of an underlying lattice structure in the RPM 
fluid that promotes the antiferromagnetic ordering of charges, it seems 
likely to us that the tricriticality we expect in the lattice gas may well not 
occur in the RPM fluid, where the usual gas-liquid appears to preempt the 
paramagnetic-antiferromagnetic ordering. The issue deserves further study, 
however, as does the possibility that a 2-line of N6el points persists in a 
solid phase of the RPM even if fluid tricriticality does not occur. 
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